skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dress, Courtney"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep learning-based object detection algorithms enable the simultaneous classification and localization of any number of objects in image data. Many of these algorithms are capable of operating in real-time on high resolution images, attributing to their widespread usage across many fields. We present an end-to-end object detection pipeline designed for rare event searches for the Migdal effect, at real-time speeds, using high-resolution image data from the scientific CMOS camera readout of the MIGDAL experiment. The Migdal effect in nuclear scattering, critical for sub-GeV dark matter searches, has yet to be experimentally confirmed, making its detection a primary goal of the MIGDAL experiment. The Migdal effect forms a composite rare event signal topology consisting of an electronic and nuclear recoil sharing the same vertex. Crucially, both recoil species are commonly observed in isolation in the MIGDAL experiment, enabling us to train YOLOv8, a state-of-the-art object detection algorithm, on real data. Topologies indicative of the Migdal effect can then be identified in science data via pairs of neighboring or overlapping electron and nuclear recoils. Applying selections to real data that retain 99.7% signal acceptance in simulations, we demonstrate our pipeline to reduce a sample of 20 million recorded images to fewer than 1000 frames, thereby transforming a rare search into a much more manageable search. More broadly, we discuss the applicability of using object detection to enable data-driven machine learning training for other rare event search applications such as neutrinoless double beta decay searches and experiments imaging exotic nuclear decays. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Proceedings of the 3rd NLP4IF Workshop on NLP for Internet Freedom: Censorship, Disinformation, and Propaganda 
    more » « less
  3. Proceedings of the EMNLP Second Natural Language Processing for Internet Freedom (NLP4IF) Workshop: Censorship, Disinformation, and Propaganda 
    more » « less
  4. Abstract Despite the f0(980) hadron having been discovered half a century ago, the question about its quark content has not been settled: it might be an ordinary quark-antiquark ($${{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ ) meson, a tetraquark ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ q q ¯ ) exotic state, a kaon-antikaon ($${{\rm{K}}}\overline{{{\rm{K}}}}$$ K K ¯ ) molecule, or a quark-antiquark-gluon ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{g}}}$$ q q ¯ g ) hybrid. This paper reports strong evidence that the f0(980) state is an ordinary$${{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ meson, inferred from the scaling of elliptic anisotropies (v2) with the number of constituent quarks (nq), as empirically established using conventional hadrons in relativistic heavy ion collisions. The f0(980) state is reconstructed via its dominant decay channel f0(980) →π+π, in proton-lead collisions recorded by the CMS experiment at the LHC, and itsv2is measured as a function of transverse momentum (pT). It is found that thenq= 2 ($${{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ state) hypothesis is favored overnq= 4 ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{q}}}\overline{{{\rm{q}}}}$$ q q ¯ q q ¯ or$${{\rm{K}}}\overline{{{\rm{K}}}}$$ K K ¯ states) by 7.7, 6.3, or 3.1 standard deviations in thepT< 10, 8, or 6 GeV/cranges, respectively, and overnq= 3 ($${{\rm{q}}}\overline{{{\rm{q}}}}{{\rm{g}}}$$ q q ¯ g hybrid state) by 3.5 standard deviations in thepT< 8 GeV/crange. This result represents the first determination of the quark content of the f0(980) state, made possible by using a novel approach, and paves the way for similar studies of other exotic hadron candidates. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  5. A first search for beyond the standard model physics in jet multiplicity patterns of multilepton events is presented, using a data sample corresponding to an integrated luminosity of 138 fb 1 of 13 TeV proton-proton collisions recorded by the CMS detector at the LHC. The search uses observed jet multiplicity distributions in one-, two-, and four-lepton events to explore possible enhancements in jet production rate in three-lepton events with and without bottom quarks. The data are found to be consistent with the standard model expectation. The results are interpreted in terms of supersymmetric production of electroweak chargino-neutralino superpartners with cascade decays terminating in prompt hadronic R -parity violating interactions. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  6. A search for the rare decay D 0 μ + μ is reported using proton-proton collision events at s = 13.6 TeV collected by the CMS detector in 2022–2023, corresponding to an integrated luminosity of 64.5 fb 1 . This is the first analysis to use a newly developed inclusive dimuon trigger, expanding the scope of the CMS flavor physics program. The search uses D 0 mesons obtained from D * + D 0 π + decays. No significant excess is observed. A limit on the branching fraction of B ( D 0 μ + μ ) < 2.4 × 10 9 at 95% confidence level is set. This is the most stringent upper limit set on any flavor changing neutral current decay in the charm sector. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  7. A<sc>bstract</sc> A search for a heavy pseudoscalar Higgs boson, A, decaying to a 125 GeV Higgs boson h and a Z boson is presented. The h boson is identified via its decay to a pair of tau leptons, while the Z boson is identified via its decay to a pair of electrons or muons. The search targets the production of the A boson via the gluon-gluon fusion process, gg → A, and in association with bottom quarks,$$\text{b}\overline{\text{b}}\text{A }$$. The analysis uses a data sample corresponding to an integrated luminosity of 138 fb−1collected with the CMS detector at the CERN LHC in proton-proton collisions at a centre-of-mass energy of$$\sqrt{s}=13$$TeV. Constraints are set on the product of the cross sections of the A production mechanisms and the A → Zh decay branching fraction. The observed (expected) upper limit at 95% confidence level ranges from 0.049 (0.060) pb to 1.02 (0.79) pb for the gg → A process and from 0.053 (0.059) pb to 0.79 (0.61) pb for the$$\text{b}\overline{\text{b}}\text{A }$$process in the probed range of the A boson mass,mA, from 225 GeV to 1 TeV. The results of the search are used to constrain parameters within the$${\text{M}}_{\text{h},\text{EFT}}^{125}$$benchmark scenario of the minimal supersymmetric extension of the standard model. Values of tanβbelow 2.2 are excluded in this scenario at 95% confidence level for allmAvalues in the range from 225 to 350 GeV. 
    more » « less
    Free, publicly-accessible full text available October 1, 2026
  8. Free, publicly-accessible full text available September 1, 2026
  9. Free, publicly-accessible full text available September 1, 2026
  10. Free, publicly-accessible full text available September 1, 2026